Part Number Hot Search : 
CY7C10 KX1400 2SK531 LXM16 SEMIC G5P109LF 74LVX BTP955M3
Product Description
Full Text Search
 

To Download IRFP1405PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet ? power mosfet v dss = 55v r ds(on) = 5.3m ? i d = 95a  www.irf.com 1 this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g description advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free features hexfet ? is a registered trademark of international rectifier. *   

      
 IRFP1405PBF absolute maximum ratin g s parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited ) i dm p u l se d d ra i n c urren t p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source volta g e v e as (thermally limited) si n gl e p u l se a va l anc h e e ner gy  mj e as (tested ) si n gl e p u l se a va l anc h e e ner gy t es t e d v a l ue  i ar a va l anc h e c urren t  a e ar r epe titi ve a va l anc h e e ner gy  mj t j operatin g junction and t stg stora g e temperature ran g ec soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case * ??? 0.49 r cs case-to-sink, flat, greased surface 0.24 ??? c/w r ja junction-to-ambient * ??? 40 1060 530 see fig.12a, 12b, 15, 16 310 2.0 20 max. 160 110 640 95 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) pd - 95509a to-247ac   
  2 www.irf.com s d g electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 55 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.058 ??? v/c r ds(on) static drain-to-source on-resistance ??? 4.2 5.3 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 77 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 120 180 q gs gate-to-source charge ??? 30 ??? nc q gd gate-to-drain ("miller") charge ??? 53 ??? t d(on) turn-on delay time ??? 12 ??? t r rise time ??? 160 ??? t d(off) turn-off delay time ??? 140 ??? ns t f fall time ??? 150 ??? l d internal drain inductance ??? 5.0 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 13 ??? from package and center of die contact c iss input capacitance ??? 5600 ??? c oss output capacitance ??? 1310 ??? c rss reverse transfer capacitance ??? 350 ??? pf c oss output capacitance ??? 6550 ??? c oss output capacitance ??? 920 ??? c oss eff. effective output capacitance ??? 1750 ??? source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current ??? ??? 95 (body diode) a i sm pulsed source current ??? ??? 640 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 70 110 ns q rr reverse recovery charge ??? 170 260 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 44v, ? = 1.0mhz v gs = 0v, v ds = 0v to 44v  v gs = 10v  v dd = 28v i d = 95a r g = 2.6 ? t j = 25c, i s = 95a, v gs = 0v  t j = 25c, i f = 95a, v dd = 28v di/dt = 100a/ s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 95a  v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. v ds = 25v, i d = 95a i d = 95a v ds = 44v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.12mh r g = 25 ? , i as = 95a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.   c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.
  www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0 1 10 100 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 60s pulse width t j = 25c t j = 175c 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 0 20406080100 i d, drain-to-source current (a) 0 20 40 60 80 100 120 140 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width
  4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 200 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v vds= 28v i d = 95a for test circuit see figure 13 0.2 0.6 1.0 1.4 1.8 2.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc
  www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 95a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.2529 0.00080 0.2368 0.014283 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri
  6 www.irf.com q g q gs q gd v g charge  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 500 1000 1500 2000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 16a 20a bottom 95a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1k vcc dut 0 l
  www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 10000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 95a
  8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period      !"
#

#"
  + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
 v ds 90% 10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %       $%$$  + -   fig 18a. switching time test circuit fig 18b. switching time waveforms
  www.irf.com 9 data and specifications subject to change without notice. this product has been designed and qualified forindustrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 08/2010 
     example: as s embled on ww 35, 2000 lot code 5657 with assembly this is an irfpe30 in the assembly line "h" 035h logo int ernational rectifier irfpe30 lot code assembly 56 57 part number dat e code year 0 = 2000 week 35 line h note: "p" in assembly line position indicates "lead-free" 
    
      
   to-247ac packages are not recommended for surface mount application. notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRFP1405PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X